The Thomas Blog

Industrial marketing and manufacturing sales tips to help you grow your business.

By Christina O'Handley |  January 25, 2017

Evolution of 3D Printing.png

From reducing costs to increasing efficiency to spurring innovation, many people are excited about the impact that 3D printing will have on the future of manufacturing. However, the truth is, it already has made a significant impact on the industry.

Take a look back at the evolution of 3D printing to see how the phenomenon started and how it has helped the manufacturing industry evolve.

The 1980s: Setting The Foundations Of 3D Printing  

3D Printing was only an idea in the 1980s. In 1981, Hideo Kodama of the Nagoya Municipal Industrial Research Institute in Japan discovered a way to print layers of material to create a 3D product. Unfortunately, Kodama was unable to get his patent for the technology approved.  

Meanwhile, in France, the French General Electric Company and CILAS, a manufacturer of laser and optical technology, found a way to create 3D printed objects. However, the companies didn’t see a use for the technology, and they soon abandoned their discoveries.

Finally in 1986, an American engineer named Charles Hull created a prototype for a process called stereolithography (SLA). Hull used photopolymers, also known as acrylic-based materials, to evolve from liquid to solid using ultraviolet lights. Hull patented the SLA printer and other companies followed suit. Hull is commonly referred to as “the father” of 3D printing.

Two other key technologies were patented during this period as well – Selective Laser Sintering (SLS), which uses powder grains to form 3D printed products; and Fused Deposition Modeling (FDM), which uses heat to layer 3D models. These 3D printing models set the foundation for 3D printing.

The 1990s: More Technologies And More Adoption

With the foundation of the technology already created, companies began experimenting, expanding and, ultimately, commercializing 3D printing.

Several new 3D printers came to market, including the ModelMaker from Solidscape®, which deposited wax materials using an inkjet print head, which was more common to traditional printing.

New processes, such as microcasting and sprayed materials, allowed 3D printing to be used for metals, not just plastics.

However, the technology was still cost prohibitive. As a result, adoption was limited to high-cost, low-volume product production. Thus, it became a natural fit for prototyping new products in the aerospace, automotive and medical industries.

The 2000s: 3D Printing Explodes

While there were iterative changes and innovations related to 3D printing throughout the early 2000s, 2005 marked the year that 3D printing went on the path to becoming more mainsteam. Many of the early patents began to expire, and inventors and entrepreneurs sought to take advantage.

A professor in England named Dr. Adrian Bowyer made it his mission to create a low-cost 3D printer. By 2008, his “Darwin” printer had successfully 3D printed over 18% of its own components, and the device cost less than $650.

The Darwin Printer

When the FDM patent fell to the public domain in 2009, more companies were able to create a variety of 3D printers and the technology became more accessible.

3D printing began making mainstream headlines, as concepts such as 3D printed limbs and 3D printed kidneys were fascinating and potentially powerful.

The 2010s And The Maker Movement

As the cost of 3D printers continued to decline, the demand for the technology began to soar, and they became more commonplace in the home and in businesses.

On the shop floor, manufacturers began leveraging 3D printing in a variety of ways. Machine parts could be repaired quickly, and inventory shortages could be combatted with ease.  

By 2014, the industry generated more than $1 billion in revenue. But along with the impressive financial impact of the technology, 3D printing also made an impact on how people work.

People were now free to make and create new products on their own, without relying on companies or technology firms. This empowering shift is fueling The Maker Revolution, which values creation and focuses on open-source hardware.  

The Future Of 3D printing

The 3D printing industry keeps on growing, so what should we expect in the future? According to a recent analysis by A.T. Kearney, 3D printing will experience a compound annual growth rate (CAGR) of 14.37 percent to nearly $17.2 billion between now and 2020. That means 3D printers will be found in your own home as well as in the classroom.

Worldwide Shipments of 3D Printers
Another recent study determined that 6.7 million 3D printers will be shipped globally by 2020 – 14 times more than in 2016. As new technologies improve the uses of 3D printers, the technology will continue to disrupt the manufacturing industry and bring it to greater heights.  

TomTalks.jpg

Topics: Manufacturing and Industrial, Technology, 3D Printing

Christina O'Handley

Christina O'Handley

Christina is a Digital Content Marketing Associate at THOMASNET.com. You can find her writing about manufacturing, supply chain and technology on Tom's Blog or trying to score tickets to Hamilton.

http://www.thomasnet.com

ADD A NEW COMMENT

Subscribe to our newsletters.

Hey Tom, how can ThomasNet.com help me...

...find the right suppliers?”


Get your FREE account

Give yourself the sourcing power of industry’s leading supplier discovery platform. It’s easy. It's FREE.

...get more of the right customers?"


Get your FREE profile »

Promote your company where serious buyers go looking for suppliers. Getting started is FREE.

Keep Up with the 50.5K Industry Pros Already Subscribed

Join our community of industry professionals. Learn about the latest innovations and insights affecting manufacturers, engineers, and B2B buyers.

Keep Up with the 50.5K Industry Pros Already Subscribed

Join our community of industry professionals. Learn about the latest innovations and insights affecting manufacturers, engineers, and B2B buyers.